Domain
1. Structure | 2. Energy | 3. Synergy | 4. Time |
1.1. Molecular scale | 2.1. Molecular scale | 3.1. Molecular scale | 4.1. Molecular scale |
1.1.1. Molecular imprinting | 2.1.1. Laser-controlled reactions | 3.1.1. Multifunctional catalysts | 4.1.1. Millisecond reactors |
1.1.2. Molecular reactors | 2.1.2. Microwave-enhanced reactions: non-catalytic | 3.1.2. Synergistic combinantions of alternative energy forms | 4.2. Micro/Meso-scale |
1.1.3. Shape-selective catalysts | 2.1.3. Microwave-enhanced reactions: heterogeneous, catalytic | 3.1.3. Catalytic membrane reactors | 4.2.1. Pulsing operation of multiphase reactors |
1.2. Micro/Meso-scale | 2.1.4. Microwave-enhanced reactions: polymerization | 3.1.4. Membrane reactors (non-selective) | 4.2.2. PHP (Pulsating Heat Pipe) |
1.2.1. Structured internals for mass-transfer operations | 2.1.5. Plasma reactors | 3.2. Micro/Meso-scale | 4.3. Macro-scale |
1.2.2. Monolith catalysts and reactors | 2.1.6. Supercritical reactions | 3.2.1. Desorptive cooling | 4.3.1. Pulsed compression reactor |
1.2.3. Foam catalysts and reactors | 2.1.7. Supercritical separations | 3.2.2. Freeze drying | 4.3.2. Reverse-flow reactors |
1.2.4. Other structured catalysts and reactors (KATAPAK’s etc.) | 2.1.8. Solar reactors | 3.3. Macro-scale | 4.3.3. Continuous Oscillatory Baffle Reactors |
1.2.5. Micromixers | 2.1.9. Magnetic field-assisted reactions | 3.3.1. Static mixers-heat exchangers | 4.3.4. Pulse combustion drying |
1.2.6. Microchannel heat exchangers | 2.2. Micro/Meso-scale | 3.3.2. Static mixers-reactors | 4.4. 4 Time - other |
1.2.7. Microchannel reactors | 2.2.1. Sonochemical reactors | 3.3.3. Monolithic stirrer-reactor | |
1.2.8. Fractal engineering and fratal devices | 2.2.2. Ultrasound-enhanced crystallization | 3.3.4. Heat exchanger (HEX) reactors | |
1.2.9. 9 Microseparators | 2.2.3. Acoustic field-enhanced transfer processes | 3.3.5. Divided wall columns | |
1.3. Macro-scale | 2.2.4. Hydrodynamic cavitation reactors | 3.3.6. Reactive distillation | |
1.3.1. Static mixers | 2.2.5. Electric field-enhanced extraction-dispersion | 3.3.7. Pervaporation-assisted reactive distillation | |
1.3.2. Advanced Heat Exchangers (Plate) | 2.2.6. Electric field-enhanced mixing | 3.3.8. Simulated Moving Bed Chromatographic Reactors | |
1.3.3. Advanced Heat Exchangers (Spiral) | 2.2.7. Electric field-enhanced heat transer | 3.3.9. Rotating Annulus Chromatographic Reactor | |
1.3.4. Advanced Heat Exchangers (Multistream) | 2.2.8. Microwave-enhanced separations | 3.3.10. Gas-Solid-Solid Trickle Flow Reactor | |
1.3.5. 5 Advanced Heat Exchangers (Shell and tube) | 2.2.9. Photochemical reactors | 3.3.11. Reactive extraction | |
1.4. Structure - Other | 2.2.10. Spinning Disc Reactors | 3.3.12. Reactive crystallization | |
2.2.11. Centrifugal adsorption technology | 3.3.13. Reactive absorption | ||
2.2.12. Magnetic field-assisted separations | 3.3.14. Reactive condensation | ||
2.2.13. Ultrasound-enhanced fluid separations | 3.3.15. Reactive comminution | ||
2.3. Macro-scale | 3.3.16. Reactive extrusion | ||
2.3.1. Supersonic gas-solid reactors | 3.3.17. Extractive distillation | ||
2.3.2. Supersonic gas-liquid reactors | 3.3.18. Adsorptive distillation | ||
2.3.3. Rotor-stator mixers | 3.3.19. Membrane distillation | ||
2.3.4. Microwave drying | 3.3.20. Distillation-pervaporation systems | ||
2.3.5. Induction, radio-frequency and microwave heating | 3.3.21. Membrane absorption/stripping | ||
2.3.6. Omic heating | 3.3.22. Membrane extraction | ||
2.3.7. Rotating Packed Beds | 3.3.23. Membrane adsorption | ||
2.3.8. Centrifugal extractors | 3.3.24. Membrane crystallization | ||
2.3.9. Viscous heating devices | 3.3.25. Extractive crystallization | ||
2.3.10. Ejector (Venturi) - based mixers and reactors | 3.4. 4 Synergy - other | ||
2.3.11. Impinging streams reactor | |||
2.3.12. G/S vortex reactors or rotating fluidized beds | |||
2.4. 4 Energy, Other |