Domain

1. Structure 2. Energy 3. Synergy 4. Time
1.1. Molecular scale 2.1. Molecular scale 3.1. Molecular scale 4.1. Molecular scale
1.1.1. Molecular imprinting 2.1.1. Laser-controlled reactions 3.1.1. Multifunctional catalysts 4.1.1. Millisecond reactors
1.1.2. Molecular reactors 2.1.2. Microwave-enhanced reactions: non-catalytic 3.1.2. Synergistic combinantions of alternative energy forms 4.2. Micro/Meso-scale
1.1.3. Shape-selective catalysts 2.1.3. Microwave-enhanced reactions: heterogeneous, catalytic 3.1.3. Catalytic membrane reactors 4.2.1. Pulsing operation of multiphase reactors
1.2. Micro/Meso-scale 2.1.4. Microwave-enhanced reactions: polymerization 3.1.4. Membrane reactors (non-selective) 4.2.2. PHP (Pulsating Heat Pipe)
1.2.1. Structured internals for mass-transfer operations 2.1.5. Plasma reactors 3.2. Micro/Meso-scale 4.3. Macro-scale
1.2.2. Monolith catalysts and reactors 2.1.6. Supercritical reactions 3.2.1. Desorptive cooling 4.3.1. Pulsed compression reactor
1.2.3. Foam catalysts and reactors 2.1.7. Supercritical separations 3.2.2. Freeze drying 4.3.2. Reverse-flow reactors
1.2.4. Other structured catalysts and reactors (KATAPAK’s etc.) 2.1.8. Solar reactors 3.3. Macro-scale 4.3.3. Continuous Oscillatory Baffle Reactors
1.2.5. Micromixers 2.1.9. Magnetic field-assisted reactions 3.3.1. Static mixers-heat exchangers 4.3.4. Pulse combustion drying
1.2.6. Microchannel heat exchangers 2.2. Micro/Meso-scale 3.3.2. Static mixers-reactors 4.4. 4 Time - other
1.2.7. Microchannel reactors 2.2.1. Sonochemical reactors 3.3.3. Monolithic stirrer-reactor  
1.2.8. Fractal engineering and fratal devices 2.2.2. Ultrasound-enhanced crystallization 3.3.4. Heat exchanger (HEX) reactors  
1.2.9. 9 Microseparators 2.2.3. Acoustic field-enhanced transfer processes 3.3.5. Divided wall columns  
1.3. Macro-scale 2.2.4. Hydrodynamic cavitation reactors 3.3.6. Reactive distillation  
1.3.1. Static mixers 2.2.5. Electric field-enhanced extraction-dispersion 3.3.7. Pervaporation-assisted reactive distillation  
1.3.2. Advanced Heat Exchangers (Plate) 2.2.6. Electric field-enhanced mixing 3.3.8. Simulated Moving Bed Chromatographic Reactors
1.3.3. Advanced Heat Exchangers (Spiral) 2.2.7. Electric field-enhanced heat transer 3.3.9. Rotating Annulus Chromatographic Reactor  
1.3.4. Advanced Heat Exchangers (Multistream) 2.2.8. Microwave-enhanced separations 3.3.10. Gas-Solid-Solid Trickle Flow Reactor  
1.3.5. 5 Advanced Heat Exchangers (Shell and tube) 2.2.9. Photochemical reactors 3.3.11. Reactive extraction  
1.4. Structure - Other 2.2.10. Spinning Disc Reactors 3.3.12. Reactive crystallization  
  2.2.11. Centrifugal adsorption technology 3.3.13. Reactive absorption  
  2.2.12. Magnetic field-assisted separations 3.3.14. Reactive condensation  
  2.2.13. Ultrasound-enhanced fluid separations 3.3.15. Reactive comminution  
  2.3. Macro-scale 3.3.16. Reactive extrusion  
  2.3.1. Supersonic gas-solid reactors 3.3.17. Extractive distillation  
  2.3.2. Supersonic gas-liquid reactors 3.3.18. Adsorptive distillation  
  2.3.3. Rotor-stator mixers 3.3.19. Membrane distillation  
  2.3.4. Microwave drying 3.3.20. Distillation-pervaporation systems  
  2.3.5. Induction, radio-frequency and microwave heating 3.3.21. Membrane absorption/stripping  
  2.3.6. Omic heating 3.3.22. Membrane extraction  
  2.3.7. Rotating Packed Beds 3.3.23. Membrane adsorption  
  2.3.8. Centrifugal extractors 3.3.24. Membrane crystallization  
  2.3.9. Viscous heating devices 3.3.25. Extractive crystallization  
  2.3.10. Ejector (Venturi) - based mixers and reactors 3.4. 4 Synergy - other  
  2.3.11. Impinging streams reactor    
  2.3.12. G/S vortex reactors or rotating fluidized beds    
  2.4. 4 Energy, Other